How to get involved

City Council meetings typically occur on the first and third Tuesday of every month at 7:00 pm in the City Hall Council Chambers located at 455 E. Calaveras Blvd. City Council agendas are posted prior to each meeting at City Hall and on the City’s website: www.ci.milpitas.ca.gov

Frequently asked questions

Why is my water brown or not clear? Stagnant water sitting in aging plumbing may become brown. This should clear up once sitting water is flushed out from the pipes and replaced with fresh water. Brown water could also be from blocked or clogged sink future aerators. Aerators are located at the end of a fixture and may become brown. This should clear up once sitting water is flushed out from the fixture.

Is there fluoride in the water? The City receives fluoridated water from SFPUC and SCWWD. SCWWD has been fluoridating water since 1995 while SCWWD began fluoridation in December 2016.

Why has my water pressure dropped suddenly? Depending on your location, you could receive water pressure between 40 to 140 psi. Water pressure could quickly be back in drought response mode. Therefore, it is important to create water conservation habits. In February 2017, the State renewed its Resolution for Emergency Drought Response and below is a list of ongoing water conservation practices:

• Apply only as much water as your landscape needs to prevent water runoff onto streets and sidewalks
• Wash vehicles with a hose that has a shut-off nozzle
• Use a broom to clean driveways and sidewalks
• Recirculate potable water in fountains or decorative water features
• Do not water landscapes during or within 48 hours of measurable rainfall
• Restaurants will serve drinking water only upon request
• Guests of hotels and motels can choose not to have towels and linens laundered daily

Can I treat my drinking water after a disaster? If you run out of stored drinking water, strain and heat water from your water heater or toilet reservoir tank (except if you use toilet tank cleaner). You cannot drink swimming pool or spa water, but it can be used for flushing toilets or washing:

• Strain large particles by pouring water through a couple of layers of paper towels or clean cloth. Purify the water by:
 • Boiling: Bring to a rolling boil and maintain for 3-5 minutes. To improve the taste, pour it back and forth between two clean containers to add oxygen back into the water;
 • Disinfecting: If the water is clear, add 8 drops of bleach per gallon. If it is cloudy, add 16 drops. Shake or stir, then let stand for 30 minutes. A slight chlorine taste and smell is normal.

Is the drought over? Have the water use restrictions been lifted? This past winter, California experienced significant precipitation that filled local reservoirs and created an ample snow pack. Our water suppliers have relaxed water restrictions for 2017, but many areas of the state are still experiencing water shortages due to their reliance on ground water that takes time to rebound. The water supply future is difficult to predict and California could quickly be back in drought response mode. Therefore, it is important to create water conservation habits. In February 2017, the State renewed its Resolution for Emergency Drought Response and below is a list of ongoing water conservation practices:

• Apply only as much water as your landscape needs to prevent water runoff onto streets and sidewalks
• Wash vehicles with a hose that has a shut-off nozzle
• Use a broom to clean driveways and sidewalks
• Recirculate potable water in fountains or decorative water features
• Do not water landscapes during or within 48 hours of measurable rainfall
• Restaurants will serve drinking water only upon request
• Guests of hotels and motels can choose not to have towels and linens laundered daily

How can I prepare for an emergency? In a disaster or emergency situation, water supplies may be cut off or contaminated. Store enough water for everyone in your family to last for at least 3 days. Store in a gallon of water per person, per day. This amount will be adequate for general drinking purposes. Three gallons per person per day is also sufficient for limited cooking. Store water in food grade plastic containers. Replace water at least once every six months. If you buy bottled “spring” or “drinking” water, keep it in its original container. Label bottles with their replacement date and store in a cool, dark place.
The City of Milpitas draws water from two sources: treated surface water from the San Francisco Public Utilities Commission (SFPUC) and treated surface water from the Santa Clara Valley Water District (SCVWD). In the event that water supply is interrupted from either SCVWD or SFPUC, the City has the option of utilizing its emergency supply to meet basic water needs. In 2016, the City supplied an average of 6.9 million gallons of water per day to approximately 16,000 homes and businesses for indoor and outdoor use in Milpitas.

Drinking Water Source Assessment Program

Drinking Water Source Assessment Programs evaluate the vulnerability of water sources to potential contamination. Both SFPUC and SCVWD have conducted drinking water source assessments for the City’s potable water supplies. The assessments are available for review at the State Water Resources Control Board (SWRCB) – Division of Drinking Water District Office. You may request that a summary of the assessments be sent to you by calling (650) 623-3474.

SFPUC conducts a watershed sanitary survey for the Hatch Hechty source annually as well as every five years for local water sources. These surveys evaluate the sanitary condition, water quality, potential contamination sources, and the results of watershed management activities. The surveys are available for review at the State Water Resources Control Board (SWRCB) – Division of Drinking Water District Office. You may request that a summary of the assessments be sent to you by calling (510) 620-3347.

SCVWD’s water source is vulnerable to potential contamination from a variety of land use practices, such as agricultural and urban runoff, recreational activities, livestock grazing, and residential and industrial development. The imported sources are also vulnerable to potential contamination from commercial staples and historic mining practices. No contaminants associated with any of these activities have been detected in SCVWD’s treated water. The water treatment plants provide multiple barriers for physical removal and disinfection of contaminants.

Recycled Water – providing drought-proof, high quality water for our community

In 2016, irrigation, commercial, and industrial customers in Milpitas used 274 million gallons of recycled water. Recycled water from the San Jose/Santa Clara Water Pollution Control Plant undergoes an extensive treatment process (including filtration and disinfection) and is delivered to landscape irrigation and industrial process customers in Milpitas, San Jose, and Santa Clara. Visit www.sanjoseca.gov/river.

Contaminants and Regulations

To ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board (SWRCB) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Maintaining water quality

The City is dedicated to maintaining the water quality and protecting the water supply from contamination. The safeguards include a combination of preventative and monitoring practices described below.

Hydrant and Water Main Flushing

Flushing of fire hydrants and water mains is performed to remove sediment and keep the distribution system refreshed by circulating water in pipes. As a result, residents in the immediate vicinity may experience temporary discoloration in their water. This discoloration does not affect the safety of the water. If you experience discoloration in your water after a fire crew has been flushing in your neighborhood, clear the water from your home pipes by running water faucets for a few minutes.

Backflow Testing

Backflow preventers is a plumbing device that keeps the water supply safe by preventing water from flowing back into the City’s distribution system. The City sends yearly testing notifications to backflow device owners requiring appropriate testing and maintenance to ensure all devices are operating correctly.

Water Sampling

Sampling of the water system is performed in accordance to state rules and regulations in order to verify the quality. This requires purging of the water line for a sample to be lab tested.

Littering is throwing it all away

Nearly 80 percent of the debris found in our watershed, creeks, shoreline, and the South San Francisco Bay is washed, blown or dumped there from land. One piece of litter can end up miles from where it is discarded on a suburban street, polluting our water systems and causing a threat to wildlife. Nearly 200 primary sources of litter are: pedestrains, motorists, trucks with uncovered loads, household trash handling and its placement at the curb, loading docks, and demolition sites.

Because we live in a watershed, our community’s litter makes a very big impact. A watershed is a land area that drains water into a creek, river, lake, wetland, bay or groundwater aquifer. In the Santa Clara Valley, the water from rain and irrigation (called runoff) picks up litter and carries it directly into storm drains and creeks that flow to San Francisco Bay.

You Can Make a Difference

• Don’t litter. Ever. Even a cigarette butt thrown on a city street can pollute the environment.
• When you see litter, pick it up and dispose of it properly.
• Secure and cover all truckloads of loose debris.
• Make sure your trash can lid is closed securely.
• Always bring a bag for trash when picnicking, hiking or camping.
• If you own a business, check your dumpster on a regular basis, keep it locked and protect it from illegal dumping.
• Report illegal dumping to the Milpitas Police Dept. at (408) 596-2400. For solid waste and street sweeping services, call Republic Customer Service at (408) 450-1234.
• Call the Santa Clara Countywide Recycling Hotline at (650) 533-8414 or visit www.reducewaste.org to find out where to dispose of or donate large commercial items such as furniture, appliances, etc.

Our drinking water and how we protect it

In the event that water supply is interrupted from either SCVWD or SFPUC, the City has the option of utilizing its emergency supply to meet basic water needs. In 2016, the City supplied an average of 6.9 million gallons of water per day to approximately 16,000 homes and businesses for indoor and outdoor use in Milpitas.

Emergency Supplies

The City does not blend or combine SFPUC and SCVWD waters under normal operating conditions. However, the service areas can be physically interconnected to provide emergency water supply if needed. The City’s water system is also interconnected with the Alameda County Water District to the north and San Jose Water Company to the south. In the event that there is an emergency, either or both agencies can provide water to the City. SFPUC and SCVWD share an intertie that can supply water from one wholesaler to the other. The City’s Pinewood Well, located in the southwestern portion of the City, is also an emergency water supply.

Drinking Water Supply

SFPUC Supply

SFPUC water is a combination of Hatch Hechty water and treated local water. Most of SFPUC’s water comes from the Hatch Hechty watershed located in the Sierra Nevada Mountains which is exempt from filtration requirements by the United States Environmental Protection agency (USEPA) and State Water Resources Control Board: Division of Drinking Water (DWD), due to the protected Sierra spring snow melt water source. Local water is collected within the Alameda watershed at Calaveras Reservoir and San Antonio Reservoir. Local water is treated through filtration and disinfection at the Sunny Valley Water Treatment Plant.

SCVWD Supply

SCVWD water is primarily from the Sacramento-San Joaquin Delta watershed via the South Bay Aqueduct, Dyer Reservoir, Lake Del Valle, and San Luis Reservoir. The water supply is supplemented by local water sources in Anderson and Calero Reservoirs for filtration and disinfection at Pentensity and Santa Teresa Water Treatment Plants.

Recycled Water Information

Recycled water is used for landscape irrigation and industrial process uses. Recycled water is primarily from the Sacramento-San Joaquin Delta watershed via the South Bay Aqueduct. Dyer Reservoir, Lake Del Valle, and San Luis Reservoir. The water supply is supplemented by local water sources in Anderson and Calero Reservoirs for filtration and disinfection at Pentensity and Santa Teresa Water Treatment Plants.

Inorganic Contaminants

Inorganic contaminants such as salts and metals can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

Microbial Contaminants

Microbial contaminants such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Inorganic Contaminants

Inorganic contaminants such as salts and metals can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

Pesticides and Herbicides

Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.

Organic Chemical Contaminants

Organic contaminants include synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff; agricultural application and septic systems.

Radioactive Contaminants

Radioactive contaminants that can be naturally-occurring or bi the result of oil and gas production and mining activities.

Microbial Contaminants

Microbial contaminants such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Inorganic Contaminants

Inorganic contaminants such as salts and metals can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

Pesticides and Herbicides

Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.

Organic Chemical Contaminants

Organic contaminants include synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff; agricultural application and septic systems.

Radioactive Contaminants

Radioactive contaminants that can be naturally-occurring or bi the result of oil and gas production and mining activities.
PRIMARY DRINKING WATER STANDARDS (PUBLIC HEALTH RELATED STANDARDS)

ORGANIC CHEMICALS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MCL</th>
<th>Limit</th>
<th>Average</th>
<th>Range</th>
<th>Average</th>
<th>Range</th>
<th>Average</th>
<th>Range</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>1.0</td>
<td>ppm</td>
<td>0.6</td>
<td>1.0</td>
<td>0.72</td>
<td>ND</td>
<td>0.180</td>
<td>ND</td>
<td>NS</td>
</tr>
<tr>
<td>Fluoride</td>
<td>2.0</td>
<td>ppm</td>
<td>0.3</td>
<td>2.0</td>
<td>0.02</td>
<td>ND</td>
<td>0.055</td>
<td>ND</td>
<td>NS</td>
</tr>
<tr>
<td>Nitrate (as Nitrogen)</td>
<td>10</td>
<td>ppm</td>
<td>3.5</td>
<td>10</td>
<td>1.1</td>
<td>ND</td>
<td>3.8</td>
<td>ND</td>
<td>NS</td>
</tr>
</tbody>
</table>

DISINFECTION BYPRODUCT PRECURSOR

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MCL</th>
<th>Limit</th>
<th>Average</th>
<th>Range</th>
<th>Average</th>
<th>Range</th>
<th>Average</th>
<th>Range</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOC (precursor control)</td>
<td>1.0</td>
<td>mg/L</td>
<td>2.1</td>
<td>3.8</td>
<td>2.4</td>
<td>1.6-5.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MICROBIOLOGICAL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
<th>Average</th>
<th>Range</th>
<th>Sources*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giardia Lamblia</td>
<td>cysts/L</td>
<td>ND</td>
<td>NA</td>
<td>1</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>0.05</td>
<td>0.16</td>
<td>1</td>
</tr>
</tbody>
</table>

DISTRIBUTION SYSTEM QUALITY

LEAD AND COPPER RULE STUDY (MILPITAS 2016 AT-EEF TAP SAMPLING)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
<th>Average</th>
<th>Range</th>
<th>Sources*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>0.2 mg/L</td>
<td>1.6</td>
<td>2.1</td>
<td>3.7</td>
</tr>
<tr>
<td>Copper</td>
<td>1 mg/L</td>
<td>0.049</td>
<td>0.049</td>
<td>1.119</td>
</tr>
</tbody>
</table>

DISINFECTION RESIDUALS AND BYPRODUCTS

Highest Location RAA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
<th>Average</th>
<th>Range</th>
<th>Sources*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disinfectant Residual as Chlorine</td>
<td>2.5 mg/L</td>
<td>0.04</td>
<td>0.2-4</td>
<td>20</td>
</tr>
</tbody>
</table>

TOTAL COLIFORMS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliforms</td>
<td>%, per month</td>
<td>7.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

SECONDARY DRINKING WATER STANDARDS (AESTHETIC STANDARDS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
<th>Average</th>
<th>Range</th>
<th>Sources*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium</td>
<td>450</td>
<td>mg/L</td>
<td>119</td>
<td>144</td>
</tr>
<tr>
<td>Copper</td>
<td>100</td>
<td>mg/L</td>
<td>139</td>
<td>190</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>1</td>
<td>mg/L</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Sodium</td>
<td>28</td>
<td>mg/L</td>
<td>19</td>
<td>36</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>17.6</td>
<td>21.0</td>
<td></td>
</tr>
</tbody>
</table>

OTHER WATER QUALITY PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Limit</th>
<th>Average</th>
<th>Range</th>
<th>Average</th>
<th>Range</th>
<th>Average</th>
<th>Range</th>
<th>Sources*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness (as Calcium Carbonate)</td>
<td>mg/L</td>
<td>188</td>
<td>18</td>
<td>38-124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>–</td>
<td>8.2-9.0</td>
<td>7.5-7.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>211</td>
<td>26</td>
<td>56-80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>21.0</td>
<td>1.0</td>
<td>19-24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Definitions of Key Terms

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as a drinking water standard (PWS or MCLG) as economically and technologically feasible. Secondary MCLs are set to protect the taste and aesthetics of drinking water. MCLs are established by the USEPA and the State Board.

Maximum Contaminant Goal (MCG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCGs are set by the USEPA.

Maximum Residual Disinfectant Level (MRDL): The level of a disinfectant in drinking water below which there is no known or expected risk to health. MRDLs are not enforceable and are not meant to be monitored or controlled by disinfectant treatments.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a disinfectant in drinking water below which there is no known or expected risk to health. MRDLGs are not enforceable and are not meant to be monitored or controlled by disinfectant treatments.

Water Supply Map

The City serves SFPUC source water to the area south of Calaveras Blvd and east of I-880; as well as north of Calaveras Blvd and east of I-880. SCVWD service areas are west of I-880; as well as south of Calaveras Blvd and west of I-880. Refer to the Water Supply Map below to see where your water comes from.

What else should I know?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by visiting the USEPA Safe Drinking Water Home.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy; persons with HIV/AIDS or other immune system disorders; some elderly; and infants can be particularly at risk from infections. These individuals should seek advice regarding appropriate means to lessen the risk of infection in their water.

Surface Water Quality Information

Fluoride and Dental Fluorosis

All water supplied by SFPUC is fluoridated. The fluoride levels in treated water are maintained under the range required by state regulations. Fluoride in drinking water is safe for use as a water disinfectant. However, home dialysis patients and aquarium owners must take precautions before using the chloraminated water in kidney dialysis machines or aquariums. Dialysis patients should consult with their doctor or dialysis technician and aquarium owners should consult with their pet store.

Some data—although representative—were collected prior to 2016, as the State Board requires monitoring for some contaminants less than once per year and the concentrations of these contaminants do not vary frequently or significantly.

Water Hardness

Water hardness is determined mainly by the presence of calcium and magnesium salts. Although hard water does not pose a health risk, it may be considered undesirable for household and industrial uses. SFPUC’s Penitencia Treatment Plant will begin fluoridation in December 2016. SCVWD’s San Teresa Treatment plant began fluoridation in December 2016. SCVWD’s Penitencia Treatment Plant will begin fluoridation in December 2016. Infants fed formula mixed with water containing fluoride may have an increased risk of dental fluorosis. According to the CDC and the USEPA, it is safe to use optimally fluoridated water for preparing infant formula. To convert hardness from ppm to grains per gallon, divide by 17.1.

Definitions

MCLG (Maximum Contaminant Level Goal) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs do not reflect the benefits of the treatment techniques or control measures intended to reduce the level of a contaminant in drinking water and are not enforceable and are not meant to be monitored or controlled by disinfectant treatments.

MCL (Maximum Contaminant Level) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLs are enforceable and are meant to be monitored and regulated through monitoring and reporting requirements and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Department of Health Services. The California Department of Health Services has set a Public Health Goal for lead in drinking water. This level may be used as a target for achieving public health goals.

Primary Drinking Water Standard (PWS or MCLG): MCLGs and MRDLGs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Secondary Drinking Water Standard (SDW): Standards for water quality attributes that affect aesthetic qualities such as color, taste, odor, and radiological contaminants.